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Pair-amplitude dynamics in strongly coupled superconductor–quantum dot hybrids
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We consider a three-terminal system consisting of a quantum dot strongly coupled to two superconducting
reservoirs in the infinite-gap limit and weakly coupled to a normal metal. Using a real-time diagrammatic
approach, we calculate the dynamics of the proximity-induced pair amplitude on the quantum dot. We find that
after a quench the pair amplitude shows pronounced oscillations with a frequency determined by the coupling
to the superconductors. In addition, it decays exponentially on a timescale set by the coupling to the normal
metal. Strong oscillations of the pair amplitude occur also when the system is periodically driven both in the
adiabatic and fast-driving limit. We relate the dynamics of the pair amplitude to the Josephson and Andreev
current through the dot to demonstrate that it is an experimentally accessible quantity.
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I. INTRODUCTION

Superconductivity is an active field of research in modern
condensed-matter physics. It is of interest from a fundamental
perspective because it provides an example of quantum coher-
ence at the macroscopic scale which gives rise to phenomena
such as the Josephson effect where a dissipationless charge
current flows without an applied bias voltage [1]. Further-
more, it provides an important ingredient for applications such
as superconducting qubits in future quantum computers [2–4].

The transition from a normal metal into the superconduct-
ing state is a second-order phase transition in which the U(1)
symmetry is spontaneously broken by the condensation of
electrons into spin-singlet, s-wave Cooper pairs as has been
established by the microscopic BCS theory of superconduc-
tivity by Bardeen, Cooper, and Schrieffer [5]. The associated
order parameter is a complex number �eiφ which corresponds
to the macroscopic wave function of Cooper pairs. The order
parameter is a dynamic quantity which can exhibit collec-
tive oscillations such as the Nambu-Goldstone mode and the
Higgs mode. The former is a gapless excitation of the super-
conducting phase ϕ while the latter is a gapped excitation of
the absolute value � of the superconducting order parameter
with minimal excitation energy 2�. Due to the Anderson-
Higgs mechanism, the frequency of the Nambu-Goldstone
mode is shifted to the plasma frequency in bulk superconduc-
tors [6–8]. Therefore the Higgs mode is the only collective
low-energy excitation of the superconducting order parameter
and stable against the decay into other modes.

The experimental detection of the Higgs mode is challeng-
ing for various reasons. The Higgs mode is charge neutral and
couples only quadratically to external electromagnetic fields.
Therefore large field strengths are needed to excite it. The
minimal excitation energy of the Higgs mode in typical BCS
superconductors is in the THz range where suitable source and
detectors have been developed only recently. Furthermore,
one has to exclude the additional excitation of quasiparticles

by Cooper-pair breaking which requires the same energy as
the excitation of the Higgs mode. The first detection of the
Higgs mode was reported in Refs. [9,10] in materials where
superconductivity coexists with a charge-density wave. The
latter couples the Higgs mode to phonons such that it can be
detected as an additional peak in the Raman spectrum. The
advent of powerful THz lasers made it possible to directly ex-
cite and observe the Higgs mode by pump-probe spectroscopy
[11]. The experimentally observed oscillation of the electro-
magnetic response can be explained theoretically in terms
of the Anderson pseudospin dynamics in a two-dimensional
BCS model [12] and by a gauge-invariant kinetic equation of
superconductivity [13]. The Higgs mode has also been probed
by its third-order nonlinear optical response which provides
a clear distinction between the Higgs mode and quasiparti-
cle excitations [14,15]. Recently, the Higgs mode has also
been detected in a strongly interacting fermionic superfluid
[16]. Further theoretical studies focused on the Higgs mode
in unconventional d-wave superconductors [17,18] and on
the coupling of the Higgs and Leggett modes in two-gap
superconductors [19]. Current reviews on the Higgs mode in
superconductors can be found in Refs. [20,21].

So far, the Higgs mode has mainly been studied in bulk
superconductors. Recently, it was demonstrated that the leak-
age of quasiparticles into a normal conductor leads to a strong
damping of the Higgs mode in a superconductor-normal
metal junction. In addition, the coherent tunneling of elec-
trons across the junction gives rise to the occurrence of two
new Higgs modes [22]. Signatures of the Higgs mode in the
charge current of a superconductor-normal metal tunnel junc-
tion were reported in Ref. [23]. Superconductors can induce
superconducting correlations in nearby nonsuperconducting
materials via the proximity effect. This raises the interesting
question about the nature of the dynamics of the proximity-
induced pair amplitude in the nonsuperconducting part of the
junction. So far, this dynamics has been studied in a weakly
coupled, temperature-biased superconductor–quantum dot
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hybrid [24]. It was shown that both the absolute value and the
phase of the induced pair amplitude can oscillate with time.
However, a strong damping due to tunneling of quasiparti-
cles typically overcomes the oscillations unless the system is
driven externally. The transient pair-amplitude dynamics has
also been investigated in noninteracting or weakly correlated
quantum dots [25–29]. In these works, the transient pair-
amplitude dynamics has been interpreted in the framework
of Rabi oscillations within the two-level system consisting
of the empty and the doubly occupied quantum dot. Further
work has studied the formation of Andreev bound states in
superconductor–quantum dot hybrids after a quench [30,31].

Here, we consider the pair-amplitude dynamics in a
strongly interacting and strongly coupled superconductor–
quantum dot hybrid in the regime where the superconducting
gap is much larger than temperature. In this parameter regime,
tunneling of quasiparticles between the dot and the supercon-
ductors is exponentially suppressed while at the same time a
strong proximity effect can occur. We account for dissipative
processes by weakly coupling the quantum dot to an addi-
tional normal metal reservoir. The charge dynamics of this
system for pulsed driving has been previously studied in light
of potential applications in quantum computing [32]. Using a
real-time diagrammatic approach which enables us to account
for the proximity effect and strong Coulomb interactions on
the dot in a nonequilibrium scenario, we study the resulting
pair-amplitude dynamics both after a quench as well as under
a periodic driving of the system. We find that in both scenar-
ios pronounced oscillations of the pair amplitude occur, thus
overcoming the limitations of the weak-coupling limit [24].

The paper is organized as follows. The theoretical model
of our hybrid system is presented in Sec. II. In Sec. III, we
introduce our theoretical description based on a real-time dia-
grammatic approach. We discuss our results for the dynamics
after a quench and under periodic driving in Secs. IV A and
IV B, respectively. Conclusions are drawn in Sec. V.

II. MODEL

We consider a three-terminal setup composed of two con-
ventional BCS superconductors coupled symmetrically to a
single-level quantum dot which in addition is weakly cou-
pled to a normal conductor; see Fig. 1. The coupling to the
superconductors induces superconducting correlations on the
quantum dot via the proximity effect while the coupling to
the normal metal allows for the tunneling of single electrons
which in turn gives rise to dissipation.

The setup is described by the total Hamiltonian

H =
∑

η

Hη + Hdot + Htun. (1)

The first term describes the three leads η ∈ {SL, SR, N} in
terms of a mean-field BCS-Hamiltonian

Hη =
∑
kσ

εη,ka†
ηkσ aηkσ +

∑
k

(�ηeiϕη aηk↑aη−k↓ + H.c.).

(2)
The first term corresponds to the kinetic energy of electrons
in lead η with spin σ and momentum k. The second term
describes the superconducting pairing and vanishes for the

FIG. 1. Schematic sketch of the three-terminal system. A single-
level quantum dot is strongly coupled to two grounded supercon-
ductors with superconducting phases ϕη = ±ϕ/2 by tunnel coupling
strengths �SL = �SR = �S. Furthermore, the quantum dot is weakly
tunnel coupled to a normal conductor with electrochemical potential
μN. The proximity effect induces superconducting correlations on
the quantum dot which are characterized by the pseudospin I.

normal lead. Here, � is the absolute value of the supercon-
ducting order parameter which we assume to be equal in both
superconductors and which is zero for the normal lead. The
phases of the superconducting order parameters are chosen
symmetrically as ϕL = −ϕR = ϕ/2 without loss of generality.
Both superconductors are assumed to have the same critical
temperature and are grounded, μS = 0. The system can be
driven into a nonequilibrium state by applying a bias voltage
μN = eV to the normal reservoir.

The single-level, spin-degenerate quantum dot with level
position ε is described by the dot Hamiltonian

Hdot =
∑

σ

εc†
σ cσ + Uc†

↑c↑c†
↓c↓, (3)

where the second term denotes the on-site Coulomb repulsion
U . The level position can be tuned by a gate voltage.

The tunneling Hamiltonian is given by

Htun =
∑
ηkσ

tηa†
ηkσ cσ + H.c., (4)

with tunnel-matrix element tη which we assume to be spin and
momentum independent. The matrix elements are related to
the tunnel-coupling strength �η = 2π |tη|2ρN

η , with density of
states in the normal state ρN

η . Due to the symmetric coupling
to the superconductors, we have �SL = �SR = �S.

In this work, we concentrate on the dynamics of the
proximity-induced superconducting pair amplitude on the
quantum dot. As it describes the dynamics of Cooper pairs
inside the superconducting gap, our focus is on the subgap
physics of the system at hands. Therefore it is a reasonable
approximation to consider our setup in the infinite-gap limit
where the superconducting gap is assumed to be the largest
energy scale in the problem. In this limit, we can take into
account the coupling between the dot and the superconduct-
ing reservoirs exactly since even- and odd-parity dot states
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decouple and the system can be mapped onto a noninteracting
one with renormalized level positions [33].

The exact resummation results in an effective dot Hamilto-
nian Heff = Hdot − Hp where for a symmetric coupling to the
superconductors the pairing Hamiltonian is given by

Hp = �S cos
(ϕ

2

)
(c↓c↑ + c†

↑c†
↓). (5)

The eigenbasis of Heff is given by | ↑〉, | ↓〉 which describe the
singly occupied dot with a spin-up or spin-down electron and

|±〉 = 1√
2

[
∓

√
1 ∓ δ

2εA
|0〉 +

√
1 ± δ

2εA
|d〉

]
, (6)

which describe a coherent superposition of empty
and doubly occupied dot states, |0〉, |d〉 with εA =√

(δ/2)2 + �2
S cos2(ϕ/2), the level detuning δ = 2ε + U

which characterizes deviations from the particle-hole
symmetric point δ = 0, and eigenenergies Eσ = ε and
E± = δ/2 ± εA [33,34]. The excitation energies of the
quantum dot are given by the differences of the eigenenergies
±(E± − Eσ ) and can be identified as the Andreev bound state
energies in the infinite-gap limit

EA,γ ′,γ = γ ′ U
2

+ γ εA, γ ′, γ ∈ {±1}. (7)

The superposition of the zero-occupied |0〉 and doubly
occupied dot |d〉 becomes largest for δ = 0. For large detun-
ings, the states |±〉 are approximately given by the empty and
doubly occupied state.

III. REAL-TIME DIAGRAMMATICS

In order to describe the pair-amplitude dynamics on the
quantum dot, we make use of a real-time diagrammatic ap-
proach [35,36] in an extension to superconducting reservoirs
[37]. The key idea of the real-time diagrammatics is to inte-
grate out all noninteracting degrees of freedom and to describe
the quantum dot with a reduced density matrix ρred.. Our
method allows us to include arbitrary interactions on the quan-
tum dot. Furthermore, it captures the coupling between the dot
and the superconductors exactly in the infinite-gap limit. The
coupling to the normal lead is accounted for in a systematic
perturbation theory in the tunnel coupling �N. In the follow-
ing, we restrict ourselves to processes up to first order in �N as
they dominate transport in the parameter regimes considered
later on.

The matrix elements of the reduced density matrix are
given by

Pχ1
χ2

= 〈χ1|ρred|χ2〉. (8)

In order to properly describe the dynamics of the pair ampli-
tude, we have to take into account the diagonal density matrix
elements Pχ

χ which describe the probability to find the dot in
the state χ as well as the offdiagonal elements P−

+ and P+
− .

The latter are crucial to capture the fast coherent tunneling of
Cooper pairs which occurs on a timescale given by �S [38].

The time evolution of the reduced density matrix elements
is given by a generalized master equation of the form

d

dt
Pχ1

χ2
(t ) = − i

h̄
(Eχ1 − Eχ2 )

+
∑
χ ′

1χ
′
2

∫ t

−∞
dt ′W χ1χ

′
1

χ2χ
′
2

(t, t ′)Pχ ′
1

χ ′
2
(t ′). (9)

The first term on the right side of the master equation
describes the coherent evolution of the quantum dot. In par-
ticular, it accounts for the coherent Cooper-pair dynamics due
to the coupling to the superconducting leads. The second term
describes the dissipative coupling to the normal lead. The
generalized transition rates W

χ1χ
′
1

χ2χ
′
2

are given by irreducible
self-energies of the quantum dot propagator on the Keldysh
contour.

The generalized master equation can be transformed into a
physically intuitive form by introducing a pseudospin degree
of freedom which characterizes the coherent superposition of
the empty and doubly occupied dot state via

Ix = Pd
0 + P0

d

2
, Iy = i

Pd
0 − P0

d

2
, Iz = Pd − P0

2
. (10)

In the infinite-gap limit, the dynamics of the pseudospin de-
couples from the dot occupations and its time evolution is
governed by a Bloch-type equation

h̄
dI
dt

= A − R · I − B × I. (11)

In Eq. (11), A denotes the accumulation vector which de-
scribes accumulation of pseudospin on the quantum dot due
to tunneling electrons. It is given by

A = −�N

4

⎛
⎜⎝

�S
εA

cos ϕ

2

∑
γ γ ′=± γ f (EA,γ ′,γ )

�S
πεA

cos ϕ

2

∑
γ γ ′=± γ ϕ(EA,γ ′,γ )∑

γ γ ′=±
(
1 + γ δ

2εA

)[
1
2 − f (EA,γ ′,γ )

]
⎞
⎟⎠,

where f (x) = {1 + exp[(x − μN)/kBT ]}−1 denotes the Fermi
function and ϕ(x) = Re[ψ ( 1

2 + i x−μN

2πkBT )] with the Digamma
function ψ (x).

The second term in Eq. (11) accounts for the anisotropic
relaxation of the pseudospin in terms of the relaxation tensor
R. The relaxation tensor describes the decoherence in the sys-
tem which arises from tunneling of single electrons between
quantum dot and normal conductor. The nonzero elements of
the relaxation tensor are

Rxx = Ryy = �N

2

∑
γ γ ′=±

(
1 − γ

δ

2εA

)(
1

2
− γ ′ f (EA,γ ′γ )

)
,

Rzz = �N

2

∑
γ γ ′=±

(
1 + γ

δ

2εA

)(
1

2
− γ ′ f (EA,γ ′,γ )

)
,

Rxz = Rzx = �N�S

2εA
cos

ϕ

2

∑
γ γ ′=±

γ γ ′ f (EA,γ ′,γ ).

Finally, the last term in Eq. (11) describes the precession
of the pseudospin in an effective exchange field B = B0 + B1.
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The exchange field has two contributions. The first one,

B0 =
⎛
⎝2�S cos ϕ

2
0

−δ

⎞
⎠, (12)

is due to the coupling to the superconductors and the level
detuning of the quantum dot. The second contribution,

B1 = −�N

2π

⎛
⎝�S

εA
cos ϕ

2

∑
γ ,γ ′=± γ γ ′ϕ(EA,γ ′,γ )

0∑
γ ,γ ′

(
1 − γ δ

2εA

)
γ ′ϕ(EA,γ ′,γ )

⎞
⎠, (13)

is due to the renormalization of the dot level positions which
arises from virtual tunneling processes between the dot and
the normal lead. The level renormalization is an interaction-
driven effect that vanishes in the limit of a noninteracting
quantum dot. Similar effects are known from quantum-dot
spin valves and weakly coupled superconductor–quantum dot
hybrids [39,40]. Since B1 is of first order in the tunnel cou-
pling �N, it is in general much smaller than B0.

The proximity effect induces a superconducting pair ampli-
tude on the quantum dot. In general, both an even-frequency
spin-singlet as well as an odd-frequency spin-triplet pair
amplitude can be induced. The latter require a broken spin-
rotation symmetry [41] and, therefore, do not occur in our
model. The spin-singlet pair amplitude given by

F = 〈c↓c↑〉, (14)

is closely linked to the pseudospin. In particular, the absolute
value of the pair amplitude is given by the length of the
projection of I into the x-y plane,

|F | =
√

I2
x + I2

y . (15)

We remark that the absolute value of the pair amplitude on
the dot is a dimensionless number that can take values in the
range 0 � |F | � 1/2.

The real-time diagrammatic technique also allows us to
calculate the Josephson current which flows between the two
superconductors as well as the Andreev current which flows
in the normal conductor [37]. In the infinite-gap limit, they are
proportional to the pseudospin components Ix and Iy, respec-
tively,

Jjos = 2e

h̄
�SIx sin

ϕ

2
, (16)

Jand = −4e

h̄
�SIy cos

ϕ

2
. (17)

Thus, the dynamics of the dot’s pair amplitude can be re-
constructed straightforwardly from the two time-resolved
currents. We remark that for a finite superconducting gap, our
results can be expected to be modified quantitatively in the
following regards. First of all, the energies of the Andreev
bound states will be renormalized [34]. In addition, the cur-
rents will be modified whenever an Andreev bound state is
in resonance with the chemical potential of the normal lead.
However, the current values away from the resonance will
hardly be affected by finite-gap corrections [34]. Furthermore,
a finite gap will give rise to quasiparticle tunneling between
the dot and the superconductors. This will lead to an additional
relaxation channel [24] which will dampen the pair-amplitude

dynamics. As the number of excited quasiparticles depends
exponentially on the ratio �/(kBT ), at sufficiently low tem-
peratures the impact of quasiparticle tunneling is suppressed.

IV. RESULTS

In this section, we analyze the dynamics of the pair am-
plitude induced on the quantum dot by the superconducting
proximity effect. First, we investigate the dynamics after
quenching the system in Sec. IV A. Then, we turn to the case
in which the system is periodically driven by an external force
in Sec. IV B.

A. Quench dynamics

In the following, we consider the pair-amplitude dynamics
after a quench at time t0 = 0 where the dot is prepared in an
initial state and then relaxes into its stationary nonequilibrium
state. As the accumulation vector A, the relaxation tensor
R and the exchange field B are time independent after the
quench, we can formally solve the Bloch equation (11) by

I(t ) =
3∑

j=1

eλ j t r j (l j )
T · (

I(0) − M−1 · A
) + M−1 · A. (18)

Here, I(0) denotes the initial value of the pseudospin right
before the quench. The matrix M describes the evolution of
the pseudospin due to relaxation and rotation Mi j = −Ri j −∑

k εi jkB j . It has the normalized left and right eigenvectors
li and ri, respectively, and the corresponding eigenvalues λ j .
For sufficiently strong coupling to the superconductor, �S �
�N, one of the eigenvalues is real while the two others are
complex-conjugates of each other. The explicit form of M and
its eigensystem are given in the Appendix.

Equation (18) shows that the pseudospin tends to the sta-
tionary value M−1 · A which depends on the accumulation
term, the relaxation tensor and the exchange field in a non-
trivial manner. The pseudospin dynamics is driven by the
difference between the initial value I(0) and the stationary
state. The dynamics shows in general two different types
of time dependence. On the one hand, the pseudospin ex-
hibits an exponential relaxation towards the stationary state
on a timescale h̄/�N. In addition, there is an oscillatory time
dependence which physically arises from the precession of
the pseudospin around the exchange field with a frequency
given by |B|. For strong coupling to the superconductor, the

precession frequency is given by f0 =
√

δ2 + 4�2
S cos2 ϕ/2

if we neglect contributions to the exchange field which are
first order in �N. This is consistent with the result of previous
work on noninteracting superconductor–quantum dot hybrids
which found an oscillation frequency of 2�S| cos ϕ/2| [26].
In our system, for a given coupling �S to the superconduc-
tors, one can manipulate the precession frequency by the
superconducting phase difference ϕ and the detuning δ. We
remark, however, that for a detuning much larger than �S the
superconducting proximity effect becomes suppressed which
provides an upper bound on the possible oscillation frequency.

In the following, we illustrate the quench dynamics for
the situation where the dot is prepared in an initial state with
large detuning δ = −10U . In consequence, the dot is mostly
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FIG. 2. Pseudospin in the x-y plane as a function of time after
a quench from δ = −10U to δ = U/2. The pseudospin dynamics
starts close to the origin and ends after t = 2.5 �N/h̄. The pseudospin
rotates counter-clockwise around the exchange field. The other pa-
rameters for the plot are �S = U/10, �N = 5 × 10−3U , μN = U/2,
kBT = U/100, and ϕ = π/4.

doubly occupied and the initial pseudospin is nearly parallel
to the z axis, I(0) ≈ (0, 0, 1/2). Subsequently, the detuning is
changed to δ = U/2 and the resulting time evolution of the
pseudospin is calculated. Figure 2 shows the projection of
the pseudospin dynamics onto the x-y plane. The projected
dynamics starts close to the origin and then precesses around
the exchange field while slowly relaxing due to tunneling
processes between the dot and the normal lead. For the pa-
rameters chosen, the projected dynamics exhibits a nearly
circular trajectory. We remark that for stronger couplings to
the superconductor, the projection becomes elliptical due to
the larger x component of the exchange field.

We now turn to the dynamics of the absolute value of
the superconducting pair amplitude |F | on the dot which is
given by the length of the projection of the pseudospin onto
the x − y plane and which is shown in Fig. 3. Right at the
quench, |F | is small but quickly rises to its maximal value
on a timescale given by h̄/�S due to the coherent tunneling
of Cooper pairs between the dot and the strongly coupled
superconductors. The coherent Cooper-pair tunneling subse-
quently gives rise to pronounced oscillations of the dot’s pair
amplitude. In addition, both the average value of the absolute
value of pair amplitude as well as its oscillation amplitude
decay exponentially with time. The timescale for this decay is
given by h̄/�N and arises from the tunneling of single elec-
trons between the normal lead and the proximitized quantum
dot.

Finally, we turn to the time-dependent currents in the sys-
tem which, as can be seen in Eqs. (16) and (17) directly reflect
the pseudospin and therefore the pair-amplitude dynamics on
the quantum dot. Figure 4 shows the Josephson and Andreev
current as a function of time. As expected, both currents show
an interplay between fast oscillations on the timescale h̄/�S

FIG. 3. Pair amplitude as a function of time after a quench.
Parameters are the same as in Fig. 2.

and an exponential decay on the timescale h̄/�N just like the
pseudospin and the pair amplitude. Hence, measuring both
the time-resolved Josephson and Andreev current through the
quantum dot provides direct access to the pair-amplitude dy-
namics. For a coupling strength of �S/h̄ ∼ 1 GHz the currents
are expected to be in the sub-nA regime.

We conclude our analysis of the quench dynamics by re-
marking that in our system the frequency of the coherent
pair-amplitude oscillations and the timescale of its exponen-
tial decay are independent of each other as they arise from
different physical processes. This allows us to explore a rich
pair-amplitude dynamics which goes beyond the Higgs mode
in bulk superconductors. In particular, we also find that a
quantum dot strongly coupled to a large-gap superconductor
is favorable to observe its pair-amplitude dynamics over a
quantum dot weakly coupled to a finite-gap superconductor
where coherent oscillations and relaxation occur on the same
timescale [24].

FIG. 4. Josephson and Andreev current as a function of time after
a quench. Parameters are the same as in Fig. 2.
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FIG. 5. Pair amplitude as a function of the chemical potential and
the detuning in the adiabatic limit. The white lines mark the Andreev
bound state energies. The parameters for the plot are �S/U=0.3,
�N/U = 5 × 10−3, kBT/U = 10−2, and ϕ = 0.

B. Periodic driving

In the following, we discuss to what extent the pair am-
plitude responds to an external parameter driving. The driving
provides an additional energy intake that can help to overcome
the damping of pair-amplitude oscillations. This allows us to
study the pair amplitude over a longer time than in the case
of a quench. We focus on driving in the two limiting cases of
adiabatic and fast driving. On the one hand, we will analyze a
time-dependent driving of the phase difference between the
superconductors ϕ(t ) = 2ωt and on the other hand a time-
dependent detuning δ(t ) = δ0 + δ1 cos(ωt ).

1. Adiabatic driving

In the regime of adiabatic driving, the changes in the sys-
tem parameters are much slower than the dynamics of the
quantum dot such that we can approximate the quantum dot
state at a given time t by the stationary solution of the master
equation with parameters corresponding to that time t . Hence,
the driving frequency must satisfy ω � �/h̄. In addition, the
amplitude of the parameter variation has to be sufficiently
small such that ωδ1 � (kBT )2 or ω�S � (kBT )2 hold, re-
spectively [42]. Since non-Markovian memory effects can be
neglected in the adiabatic regime, the system is effectively in
an instantaneous stationary state at any time which implies
that the dynamic properties in the adiabatic regime can be
deduced from the static properties of our setup.

In Fig. 5, we have plotted the dot’s pair amplitude as a
function of the detuning δ and the chemical potential of the
normal lead μN for a fixed phase difference ϕ = 0. We find
that there are parameter regimes where the pair amplitude of
the dot vanishes exactly. For negative detuning, this happens
for chemical potentials μN between the Andreev bound state
energies EA,+,− and EA,−,− while for positive detuning, this
occurs for EA,+,+ > μN > EA,−,+. For these parameters, the
dot is preferably singly occupied such that no superconducting
proximity effect can take place. For other parameters, the pair
amplitude is in general finite. It takes particularly large values

FIG. 6. Pair amplitude as a function of the detuning δ and the
phase difference ϕ in the adiabatic limit. The white contours mark the
Andreev bound state energies. The plot parameters are �S/U=0.3,
�N/U = 5 × 10−3, μN/U = 1, kBT/U = 10−2, and ϕ = π/4.

of up to |F | ≈ 0.25 close to the particle-hole symmetric point
δ = 0 where the proximity effect is strongest.

By inspecting Fig. 5, we see that there are different ways
of driving pronounced oscillations of the pair amplitude in the
adiabatic regime. One can, e.g., fix the chemical potential of
the normal lead at μN ≈ ±U/2 and drive the pair amplitude
smoothly via the detuning. Alternatively, one can fix the de-
tuning around δ = ±U/2 and drive the pair amplitude via a
modulation of the electrochemical potential μN. As the elec-
trochemical potential crosses the Andreev bound states, this
leads to abrupt changes in the dot’s pair amplitude. Figure 6
shows the pair amplitude as a function of detuning δ and
phase difference ϕ at a fixed electrochemical potential of the
normal lead μN = U . As discussed above, the pair amplitude
|F | vanishes for detunings EA,−,+ < δ < EA,+,+ because the
dot is singly occupied for these parameters. Similarly, the
pair amplitude vanishes for a phase difference ϕ = π as in
this case, the accumulation term A and the exchange field B
point along the z direction such that no x and y component
of the pseudospin are generated in the stationary state. For
other phase differences, the dot exhibits again a sizable pair
amplitude if the detuning is chosen sufficiently small. This
opens up a way to drive the pair-amplitude dynamics also via
the superconducting phase difference.

Just as in the case of a quench, the pseudospin dynamics
in the adiabatically driven system can be accessed experi-
mentally via the time-resolved charge currents in the system.
Interestingly, we find that in the adiabatic regime, the Joseph-
son current is much larger Andreev current. This results from
the fact that the pseudospin accumulation generates only a
small time-dependent y component of the pseudospin, which
is about three orders of magnitude smaller than the pseudospin
components in the x-z plane. According to Eqs. (16) and (17),
this immediately implies that the time-dependent contribution
to the Andreev current is orders of magnitude smaller than
the time-dependent Josephson current such that it is possible
to reconstruct the pseudospin dynamics from the Josephson
current alone. At the same time, this also implies that the
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pair-amplitude dynamics under adiabatic driving is dominated
by an oscillation of its absolute value while its phase is nearly
constant. Therefore the pair-amplitude dynamics mimics the
Higgs mode in bulk superconductors. We remark that our re-
sults differ from those of Ref. [24] where it was shown that for
weak coupling to the superconductors, the adiabatic driving
will in general excite the dynamics of both, the absolute value
and the phase of the pair amplitude, unless specific driving
schemes are applied.

2. Fast driving

In the following, we discuss the opposite limit when the
system is driven with a frequency greater than the coupling
strength to the superconductor. This limit is in particular
relevant for driving the system via the phase difference ϕ.
One can achieve a time-dependent phase difference via the
AC Josephson effect by applying a voltage V between the
superconducting reservoirs which will give rise to a phase that
changes on a timescale given by h̄/(eV ) which can be larger
than h̄/�S. We tackle the problem in the limit of a large bias
voltage applied to the normal conductor. On the one hand, this
minimizes the relaxation rate in the system such that we can
expect a large pair amplitude in this limit. On the other hand,
if the chemical potential is much larger than the Andreev
bound state energies, we can neglect level renormalizations
which simplifies our analysis. Finally, transport becomes uni-
directional in the large bias limit which further simplifies the
problem.

In order to describe the fast driving regime, we make a
Fourier ansatz for the pseudospin, I = ∑

n In exp(iωt ), and
split the exchange field into its Fourier components B = B0 +
B+ exp(iωt ) + B− exp(−iωt ) with B+ = B− = (�S, 0, 0)T

and B0 = (0, 0,−δ)T . By inserting the Fourier ansatz into the
master equation, we obtain an infinite hierarchy of equations
for the Fourier components of I,

GnIn + B+(In−1 + In+1) = δ0nA (19)

with Gn = (�N + inω)1 + B0 and A = (0, 0, �N/2)T . Equa-
tions of this type occur generically in the Floquet analysis
of driven quantum systems and can be solved by the method
of matrix-continued fractions [43]. To this end, we introduce
ladder operators for lowering LnIn = In−1 and raising RnIn =
In+1 the Fourier index. The ladder operators can be calculated
from Eq. (19) for the case of n �= 0. The result of the ladder
operators are the continued fractions

Rn−1 = −[Gn + B+Rn]−1B+, (20)

Ln+1 = −[Gn + B+Fn]−1B+. (21)

The ladder operators allow us to solve Eq. (19) for n = 0.
In the fast-driving limit, it is sufficient to take into account
only the ladder operators L0 and R0. Formally, the continued-
fraction method is a systematic expansion in �S/(h̄ω). When
we take into account L0 and R0 only, we neglect the genera-
tion of higher harmonics. As has been discussed in Ref. [24]
for the pair-amplitude dynamics of a quantum dot weakly
coupled to superconductors with a finite gap, the amplitude
of higher harmonics is suppressed as the quantum dot cannot
follow the external driving at extremely high frequencies.

FIG. 7. Range of the pair-amplitude oscillation as a function of
the external driving frequency in the fast-driving limit for different
coupling strengths to the superconductors �S = δ/10 (blue), 0.4 δ

(orange), and δ (green). The dashed lines mark the solution of our
analytic approximation and the filled areas the solution of the nu-
meric calculation. For each driving frequency, the plot marks the
upper and lower bound of the pair amplitude. Plot parameters are
�N = 5 × 10−3U , δ = U , μN = −10U , and kBT = U/100.

Therefore, the pseudospin dynamics is well characterized by
the Fourier components I0 and I±1.

In Fig. 7, we show the range of the pair-amplitude oscilla-
tion as a function of the driving frequency ω. As can be seen
in Fig. 7, the agreement between our continued-fraction ap-
proximation (dashed lines) and the numerical solution of the
full master equation (filled area) is good for sufficiently large
driving frequencies. We find that the agreement between the
approximative solution and numerics starts at lower driving
frequencies the smaller the coupling to the superconductor is.
Interestingly, the agreement between analytics and numerics
does not improve if we take into account additional ladder
operators and higher Fourier components. As can be seen in
Fig. 7, the system is able to follow the external driving up
to high frequencies that are larger than the coupling to the
superconductors. For fast driving, the average pair amplitude
scales with (�S/ω)2. This is in strong contrast to the case of
a weakly coupled superconductor–quantum dot hybrid [24]
where the pair-amplitude dynamics is strongly suppressed in
the fast driving case.

V. CONCLUSIONS

We have theoretically analyzed the dynamics of the super-
conducting pair amplitude of a quantum dot strongly coupled
to two infinite-gap superconductors and weakly coupled to a
normal metal by means of a real-time diagrammatic approach
that enables us to account for strong Coulomb interactions
and the superconducting proximity effect in a nonequilibrium
scenario.

We found that the intrinsic dynamics of the pair ampli-
tude after a quench is governed by two effects. On the one
hand, there is a coherent oscillation of the pair amplitude
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on a timescale h̄/�S due to the tunneling of Cooper pairs
between the dot and the superconductors. On the other hand,
the pair amplitudes decays exponentially on a timescale given
by h̄/�N due to the tunneling of single electrons between the
dot and the normal metal.

The damping can be overcome by driving the system ex-
ternally. We analyzed the driven dynamics in the limit of
adiabatic driving where the dynamics can be linked to the
static properties of the system. In particular, we found that it is
possible to excite oscillations of the absolute value of the pair
amplitude only, this realizing an analog of the Higgs mode
in bulk superconductors. Furthermore, we investigated the
system’s dynamics under fast driving by means of a Fourier
analysis that revealed that the dynamics of the pair amplitude
can follow the external drive up to frequencies significantly
larger than the coupling strength to the superconductors.

Our results demonstrate that a strongly coupled
superconductor–quantum dot hybrid exhibits a rich
pair-amplitude dynamics. The tunability of quantum-dot
systems allows for a straightforward manipulation of the
dynamics. The link between charge currents and pair
amplitude opens up the possibility to detect the pair-amplitude
dynamics experimentally. Our results pave the way for future
studies of nontrivial pair-amplitude dynamics in other
superconducting hybrid structures.
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APPENDIX: EIGENSYSTEM OF THE MASTER EQUATION

To solve the master equation from Eq. (11), we rewrite it
in the form

h̄
dI
dt

= A + M · I,

with the matrix M representing the dynamics due to relaxation
and the exchange field. For a symmetric coupling between the
quantum dot and superconductors, the matrix is given by

M =
⎛
⎝−Rxx Bz −Rxz

−Bz −Rxx Bx

−Rxz −Bx −Rzz

⎞
⎠.

The solution of the master equation can be expressed in terms
of the left and right eigensystems of M. The eigenvalues λi

are given by the zeros of the characteristic polynomial

0 = −2BxBzRxz − B2
x (Rxx + λ) − B2

z (Rzz + λ)

−(Rxx + λ)(−R2
xz + (Rxx + λ)(Rzz + λ)).

The associated unnormalized left and right eigenvectors are
given by

l j =
⎛
⎝Bz(Bx + Ryz ) + (By − Rxz )(Rxx + λ j )

Bz(By − Rxz ) − (Bx + Ryz )(Rxx + λ j )
B2

z + (Rxx + λ j )2

⎞
⎠,

r j =
⎛
⎝Bz(Bx − Ryz ) − (By + Rxz )(Rxx + λ j )

Bz(By + Rxz ) + (Bx − Ryz )(Rxx + λ j )
B2

z + (Rxx + λ j )2

⎞
⎠,

respectively.
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